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Abstract

The projection problem of geometric measure theory is the following: given a set A ⊆ Rn,

what is the relationship between the geometric properties of A and those of its projections onto

k-dimensional subspaces of Rn? One way of answering this is to bound the dimension of the

so-called exceptional set of orthogonal projections of A—the set of k-planes onto which the

orthogonal projection of A has unusually low dimension compared to the dimension of A. Our

purpose is to review the most important results of this sort, with an eye toward the technical

tools involved in their proof, and to survey the author’s own research in this area.
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1 The projection problem

We begin with a broad overview of the projection problem with the intent of synthesizing the

historical and mathematical aspects into a single narrative. The theorems we examine merit ap-

preciation for their own sake, but they should also serve to contextualize the second section of this

article, in which we specialize to an aspect of the problem that arises naturally from the preceding.

While the praxis might suggest that the connections with the earlier work are tenuous, the novelty

of the ideas at play should rather connote the nuanced relationship between measure and geometry

that the projection problem entails. In the third section, we take a critical look at the author’s

contributions, including the significance of his results and their potential for future developments.

1.1 Prelude: product sets

Let A ⊆ Rn and B ⊆ Rm. An early result of geometric measure theory, due to Besicovitch and

Moran [BM45], states the following: if A and B are Hausdorff measurable with positive and finite

Hausdorff measure in their respective dimensions, then

dimA+ dimB ≤ dim(A×B), (1.1)

where dimE denotes the Hausdorff dimension of a subset E of a metric space. The inspiration for

the proof is that capacities behave well under projections, whence Frostman’s lemma becomes a

highly applicable tool. A result of Marstrand [Mar54b] extended the result to arbitrary sets A ⊆ Rn

and B ⊆ Rm; in this setting, Frostman’s lemma is unavailable, necessitating a functional analytic

approach. In the same paper in which he defined the packing dimension dimP E, Tricot [Tri82]

proved several more inequalities expressing the relationship between the dimension of a product set

and those of its factors:

dim(A×B) ≤ dimA+ dimP B ≤ dimP (A×B) ≤ dimP A+ dimP B, (1.2)

again for arbitrary A and B subsets of Euclidean spaces. Howroyd [How95; How96], building on

the work of Larman [Lar67] and Wegmann [Weg69], extended both (1.1) and (1.2) to subsets of

arbitrary metric spaces.

One can interpret these as results about the behavior of dimension under projections, namely, the

projections of product sets onto the factors of the ambient product space. Specifically, we have

A = πRn(A×B) and B = dimπRm(A×B)

in the Euclidean case, where πV : W → V denotes the orthogonal projection of a vector space W

onto a subspace V ⊆ W , and

A = πX(A×B) and B = πY (A×B)

in the general metric space setting, where the projections are potentially nonlinear. In this language,

Equations (1.1) and (1.2) tell us how the Hausdorff and packing dimensions of a product set

relate to those of its images under projection, and how the regularity of the images—as measured

by the difference between their Hausdorff and packing dimensions—affect the strength of those

relationships. In particular, if dimP B = dimB, then dimA + dimB = dim(A × B), and if

dimP A = dimA as well, then all five expressions in (1.1) and (1.2) are equal. Peculiarly, the

ansatz dim(A×B) = dimP (A×B) does not tell us anything so useful about the dimensions of the

factors. One can take this as a simple expression of the ill behavior of packing dimension under

projections, foreshadowing the developments of §2.
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1.2 Problem setup and background material

A natural question to ask at this point is what can be said when we replace the product set

A × B with an arbitrary subset of the ambient space: in view of the results in §1.1, one should

hope to ascertain the size or regularity of a set from knowledge of its projections, or conversely.

In the absence of two distinguished projections, one is compelled to examine projections onto all

subspaces of Rn of a fixed dimension k—or at least a rich subcollection thereof—when dealing with

orthogonal projections of Euclidean spaces. In the case of general metric spaces, a more novel

framework is required, such as that constructed by Peres and Schlag [PS00] in their seminal paper

on generalized projections. This level of generality exceeds our needs, but we will have occasion to

discuss nonlinear projections and the fundamental notion of transversality in §2.

The mathematical concepts required to articulate and understand the following work do not run

much deeper than the notions of Hausdorff and packing dimension and their fundamental properties,

although a few other specialized concepts make appearances. The next few sections outline this

foundational material.

1.2.1 Measures and dimensions

Let X be a complete separable metric space. By a measure on X we mean what is in general

measure theory called an outer measure. Of exclusive concern to us are Borel regular measures,

i.e., Borel measures µ with the following outer regularity property: for each A ⊆ X, there exists

a Borel set B ⊇ A such that µ(A) = µ(B). A Borel regular measure µ is a Radon measure if it is

locally finite in the sense that µ(K) < ∞ for all K ⊆ X compact. All finite Borel measures on X

are (necessarily) Borel regular, hence, Radon. Given another metric space Y and a Borel function

φ : X → Y , we can define a Borel measure on Y by

φ♯µ(B) := µ(φ−1(B))

for all B ⊆ Y and call it the pushforward of µ by φ. The equation∫
Y
f dφ♯µ =

∫
X
f ◦ φdµ,

valid for all integrable functions f : Y → R, expresses integration with respect to φ♯µ in term of

integration with respect to µ.

Let 2X be the power set of X and let |F | be the diameter of a set F ∈ 2X . For each s ≥ 0, the

Carathéodory construction yields a family of functions Hs
δ : 2

X → [0,∞], δ ∈ (0,∞], defined by

Hs
δ(A) := inf

{ ∞∑
i=1

|Fi|s : Fi ∈ 2X , |Fi| ≤ δ, A ⊆
∞⋃
i=1

Fi

}
.

The function Hs
∞, called the s-dimensional Hausdorff content on X, will be of particular in

§3.2. The resulting Carathéodory measure

Hs(A) := lim
δ→0

Hs
δ(A) = sup

δ>0
Hs

δ(A)

is Borel regular and is called the s-dimensional Hausdorff measure on X. For each A ⊆ X,

there is a unique s ∈ [0,∞] with the following property: for all r < s < t, we have

0 = Ht(A) ≤ Hs(A) ≤ Hr(A) = ∞,
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or, equivalently,

s = sup
{
t ∈ [0,∞) : Ht(A) > 0

}
= inf

{
r ∈ [0,∞) : Hr(A) = 0

}
.

We write dimA := s and call this number the Hausdorff dimension of A.

Perhaps the most useful nontrivial property of Hausdorff dimension that we use is the following, as

it entails that Hausdorff content is sufficient to determine Hausdorff dimension.

Proposition 1.1. Let A ⊆ Rn. Then Hs(A) > 0 if and only if Hs
∞(A) > 0.

Hausdorff measure—hence, Hausdorff dimension—is defined in terms of covers by arbitrary sets of

diameter at most δ. It is sometimes possible to recover information about Hausdorff dimension

using smaller families of covers, namely, covers by balls with radius equal to δ. For each nonempty

bounded set A ⊆ X and each δ > 0, let

N(A, δ) := min

{
k ∈ Z+ : ∃xi ∈ X s.t. A ⊆

k⋃
i=1

B(xi, δ)

}
, (1.3)

where (for definiteness) we take the balls to be closed. We define the upper box dimension of

A, also called its upper Minkowski dimension , by

dimBA := sup

{
t ∈ [0,∞) : lim sup

δ↓0
N(A, δ)δt > 0

}

= inf

{
r ∈ [0,∞) : lim sup

δ↓0
N(A, δ)δr = 0

}
.

(1.4)

Comparing the admissible covers of A in the definitions of Hausdorff and upper box dimensions

yields the inequality

dimA ≤ dimB A.

We will often deal with sets A for which equality holds.

When working with coverings of sets, quantities often arise that are unequal up to an unimportant

multiplicative constant. Abstractly, if Pα and Qα are quantities depending on some parameter α,

then the notation Pα ≲ Qα means that Pα ≤ CQα for some constant C independent of α. If

Pα ≲ Qα ≲ Pα, then we simply write Pα ∼ Qα. When several parameters are present and it is

unclear from context, we use subscripts on the relations ≲ and ∼ to indicate on which parameters

the implicit constants depend or else state these parameters explicitly.

We now turn to packing dimension, a sort of “dual” to Hausdorff dimension. It is perhaps most

natural to define this in terms of packing measure, but, to streamline the exposition, we present an

alternative characterization—the only one we will use. The packing dimension of a nonempty

subset A ⊆ X is given by

dimP A := inf

{
sup
i∈Z+

dimBAi : A =
∞⋃
i=1

Ai, |Ai| < ∞

}
.

An important feature of packing dimension that upper box dimension lacks is countable stability :

dimP

∞⋃
i=1

Ai = sup
i∈Z+

dimP Ai.
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1.2.2 Energies of measures

This section presents tools for quantifying how “concentrated” a measure is locally. In turn, these

quantities allow us to characterize the dimension of a set in terms of the measures it supports.

For A ⊆ Rn, let M(A) be the family of Borel measures µ compactly supported in A and with

0 < µ(A) < ∞. The s-energy of a measure µ ∈ M(Rn) is defined by

Is(µ) :=

∫∫
∥x− y∥−s dµ(x)dµ(y),

and we call µ an s-Frostman measure if

µ(B(x, r)) ≤ rs ∀x ∈ Rn and ∀r > 0.

The importance of the following lemma is difficult to understate.

Theorem 1.2 (Frostman’s Lemma). Let A ⊆ Rn be a Borel set and s ≥ 0. Then Hs(A) > 0

if and only if A supports an s-Frostman measure.

Frostman’s lemma and an elementary computation with the “layer cake” formula∫ ∞

0
∥x− y∥−s dµ(y) = s

∫ ∞

0
µ(B(x, r))r−s−1 dr

produce the following.

Proposition 1.3. If µ ∈ M(Rn) is s-Frostman and s > 0, then It(µ) < ∞ for all 0 ≤ t < s.

Conversely, if µ satisfies Is(µ) < ∞, then there exists a Borel set B ⊆ Rn such that µ⌞B (the

restriction of µ to B) is s-Frostman. Consequently, if A ⊆ Rn is a nonempty Borel set, then

dimA = sup {s > 0: A supports an s-Frostman measure}
= sup {s > 0: ∃µ ∈ M(A) s.t. Is(µ) < ∞},

where sup∅ := 0.

1.2.3 Fourier analysis of measures

Again let µ ∈ M(Rn). The Fourier transform of µ is the continuous function

µ̂(ξ) :=

∫
e−2πiξ·x dµ(x),

ξ ∈ Rn. More generally, if T ∈ S ′(Rn) is a tempered distribution, then we define the distributional

Fourier transform of T by its action on Schwartz functions φ ∈ S(Rn):

T̂ (φ) := T (φ̂),

where

φ̂(ξ) :=

∫
φ(x)e−2πiξ·x dx

is the classical Fourier transform. If we regard a measure µ ∈ M(Rn) as a tempered distribution,

then its distributional Fourier transform agrees with its Fourier transform as a measure, so the

notation is unambiguous.

For us, the utility of µ̂ stems from its relationship to the s-energy of µ.
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Theorem 1.4. For every 0 < s < n, there is a constant γ(n, s) > 0 such that

Is(µ) = γ(n, s)

∫
|µ̂(x)|2 ∥x∥s−n dx

for all µ ∈ M(Rn).

This expression on the right continues to make sense even when s ≥ n: the s-energy is necessarily

infinite when s > n, but
∫
|µ̂(x)|2 ∥x∥s−n dx might still be finite. As is standard in Fourier analysis

(e.g., in defining fractional derivatives), we use this Fourier analytic characterization to broaden

our previous definitions. For all s ≥ 0, the s-Sobolev energy of a measure µ ∈ M(Rn) is given by

Is(µ) :=
∫

|µ̂(x)|2 ∥x∥s−n dx

and its Sobolev dimension by

dimS µ := sup {s > 0: Is(µ) < ∞},

where sup∅ := 0. The relation

Is(µ) ∼µ

∫
|µ̂(x)|2 (1 + ∥x∥)s−n dx

holds for s > 0. It can be easier to work with a locally bounded integrand, so we typically use the

characterization

dimS µ = sup

{
s > 0:

∫
|µ̂(x)|2 (1 + ∥x∥)s−n dx < ∞

}
in proofs.

1.2.4 The Grassmannian

Let Gr(n, k) be the Grassmannian—the manifold whose elements are the k-dimensional linear

subspaces of Rn. The Grassmannian carries the structure of a metric space with metric d(V,W ) :=

∥πV − πW ∥, where πV : Rn → V ⊆ Rn and πW : Rn → W ⊆ Rn are orthogonal projections and ∥ · ∥
is the operator norm induced by the Euclidean norm. It also enjoys an invariant measure induced

by the action of the orthogonal group O(n): if θn is the Haar measure on O(n) and V ∈ Gr(n, k),

then

γn,k(A) := θn
(
{T ∈ O(n) : T (V ) ∈ A}

)
,

where the definition does not depend on the specific choice of V . This Radon measure is uniformly

distributed in the sense that γn,k(B(V, r)) = γn,k(B(W, r)) for all V,W ∈ Gr(n, k) and all r > 0,

and it is k(n− k)-Ahlfors regular in the sense that γn,k(B(V, r)) ∼ rk(n−k) for r ∈ (0, 1].

A key estimate used in proving projection theorems is the following.

Lemma 1.5. If ν ∈ M(Gr(n, k)) is p-Frostman, then

ν
(
{V ∈ Gr(n, k) : ∥πV (x)∥ ≤ δ}

)
≲n

(
δ/∥x∥

)p−k(n−k−1)

and

ν
(
{V ∈ Gr(n, k) : dist(x, V ) ≤ δ}

)
≲n

(
δ/∥x∥

)p−(k−1)(n−k)

for all x ∈ Rn \ {0} and all 0 < δ < ∞.
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δ

≤
√

2δ

ẽ

S1−x

(0,0)

x

Figure 1. The red arcs represent the set of e ∈ S1 such that dist(x, span e) ≤ δ, where

by scaling invariance we take ∥x∥ = 1 without loss of generality. The arcs lie in a pair of

Euclidean balls of radius ∥x− ẽ∥ ≤
√
2δ centered at ±x, so their total ν-measure is at most

2
(√

2δ
)p ∼ δp when ν is p-Frostman.

Its proof is an elementary geometric argument whose crux is to estimate the number of balls in a

δ/∥x∥-cover of the set {V ∈ Gr(n, k) : x ∈ V }. We can identify Gr(2, 1) with the unit circle S1,
and in this case the proof is particularly simple; see Figure 1.

Occasion will arise in the proof of Proposition 1.12 to apply Frostman’s lemma to subsets of S1

(and, more generally, in the proof of Theorem 1.15 to subsets of Gr(n, k)). This is valid in view of

Theorem 1.2 because these spaces admit isometric embeddings into Rm for sufficiently large m, and

Lemma 1.5 will be applied to the Frostman measures on these spaces to obtain invaluable integral

estimates.

1.2.5 Symbolic dynamics

A family (fi)
k
i=1 of contractions of Rn is called an iterated function system (IFS). It is a fact

that there exists a unique nonempty compact set K ⊂ Rn that is invariant under the system, i.e.,

such that
k⋃

i=1

fi(K) = K;

this is called the limit set or attractor of the IFS. In the event that the sets fi(K) are pairwise

disjoint, we say that the IFS satisfies the strong separation condition (SSC ). If the fi are all

conformal maps, we call K self-conformal ; if they are similarities (i.e., if fi(x) = aix+ bi, ai ∈ R,
bi ∈ Rn), we call K self-similar . The middle-thirds Cantor set in R and the four-corner Cantor

set in R2 are perhaps the most popular examples of self-similar sets, and both are generated by

IFS satisfying the SSC.

What follows is closely adapted from [Ram02], and presenting the main result therein is our reason

for laying down this notation. In particular, these definitions will help us to articulate what it

means for a parametrized family of IFS to be “degenerate” for some values of the parameter.

Let (fi)
k
i=1 be an IFS on Rn. Here and in §2.1, we assume that the fi are C

1,β for some β > 0; that

they are conformal; and that the local contraction ratios |detDfi|1/n are uniformly bounded.
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The set Σ := {1, ..., k}Z+ of all (infinite) sequences of integers 1 through k is called the symbol

space of the IFS. Given ω = (ω1, ω2, ...) ∈ Σ, we denote ωm := (ω1, ..., ωm) and fωm := fω1◦· · ·◦fωm .

We moreover define

fω(x) := lim
m→∞

fωm(x);

the limit always exists by the Cantor intersection theorem, as the fi are all contractions. Lastly,

we define a projection map Π: Σ → Rn by

Π(ω) := fω(0).

When working with families of IFS indexed by a parameter t, the subscripted symbol Πt will denote

the corresponding projection.

1.2.6 Homogeneous sets and dimension conservation

The following summarizes some essential material from Furstenberg’s paper [Fur08]. It is hardly

an overstatement to call this the backbone of §2.2 and §3.2.

A Lipschitz function f : Rn → Rm is said to be dimension conserving (DC ) for a set A ⊆ Rn

if there exists ∆ ≥ 0 such that

∆ + dim
{
y ∈ Rm : dim(f−1(y) ∩A) ≥ ∆

}
≥ dimA, (1.5)

where dim∅ := −∞. Heuristically, f is DC for A if a substantial portion of the dimension lost by

A under f is accounted for by the dimension of the fibers: it is a sort of “rank-nullity inequality.”

The pathological Example 7.8 of [Fal14] shows that even the projections of a product set onto the

coordinate axes may radically fail to be DC for that set.

The Hausdorff metric on the class K of nonempty compacta in Rn is defined by

ρ(H,K) := inf {ε ≥ 0: H ⊆ Kε and K ⊆ Hε} = inf {ε ≥ 0: H ∪K ⊆ Hε ∩Kε},

H,K ∈ K, where Aε is the closed ε-neighborhood of A. With the Hausdorff metric, K is a complete

metric space.

We now describe the sets K ∈ K with which we will be working. Scaling and translating a set does

not affect the dimension of the projection of a set in any direction, so we assume without loss of

generality that K ⊆ [0, 1]n. A closed set K ′ ⊆ [0, 1]n is called a miniset of K if there exists an

expanding homothety φ(x) = rx + b (|r| ≥ 1) such that K ′ ⊆ φ(K). A closed set K ′′ ⊆ [0, 1]n is

called amicroset ofK if there exists a sequence (K ′
j)

∞
j=1 of minisets ofK such that

(
K ′

j∩[0, 1]n
)∞
j=1

converges to K ′′ in the Hausdorff metric: ρ(K ′
j ,K

′′) → 0. Finally, K is said to be homogeneous

if all its microsets are minisets; that is, if the class of minisets of K is closed in K.

Loosely, K is homogeneous if it looks the same at arbitrarily small scales: even if the minisets K ′
j

must be contained in larger and larger expansions of K as j → ∞ (meaning they resemble smaller

and smaller subsets of K), there still exists a scale on which the limiting set K ′′ coincides with a

subset of K at that scale. Besides the embedded submanifolds of Rn, the concrete examples to bear

in mind are the self-similar sets containing no rotations and satisfying the SSC. One non-example

is the set
{
1
j

}∞
j=1

∪ {0}: the interval [0, 1] is a miniset but not a microset.
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Appreciation for the definition of “dimension conserving” is essential for understanding §3. On

the other hand, the technical definition of a “homogeneous set” is less important, as the only two

properties we will require are the following (cf. [Fur08] p. 407 and Theorem 6.2).

Proposition 1.6. If K is homogeneous, then dimK = dimBK.

Theorem 1.7. If K ⊂ Rn is homogeneous and f : Rn → Rm is linear, then f is DC for K. In

particular, every projection map is DC for K.

Theorem 1.7 is highly nontrivial and its proof is steeped in ergodic theory. The connections between

geometric measure theory and ergodic theory run rich, deep, and (regrettably) outside the scope

of this paper.

1.3 The Besicovitch-Federer and Marstrand projection theorems

Historically, the first major theorem concerning the projection problem for planar sets came in

[Bes39]. The final result in a groundbreaking trio of papers, it was asserted by Besicovitch to have

stature comparable to the characterization of rectifiable and purely unrectifiable sets in terms of

the a.e. existence of tangents. Call an Hs-measurable set A ⊆ Rn an s-set if 0 < Hs(A) < ∞, and

for each e ∈ S1, let πe : R2 → R denote the orthogonal projection πe(x) := e · x and Ae := πe(A).

Proposition 1.8. Let A ⊂ R2 be a 1-set.

(a) A is purely unrectifiable if and only if L1(Ae) = 0 for H1-a.e. e ∈ S1.
(b) A has a countably rectifiable subset of positive H1-measure if and only if L1(Ae) > 0 for

H1-a.e. e ∈ S1.

An elementary geometric argument reveals that a countably rectifiable 1-set projects onto a set of

measure 0 in at most one direction, and this simple observation allows us to sharpen Proposition

1.8 in an extreme way.

Corollary 1.9. Let A ⊂ R2 be a 1-set.

(a) A is purely unrectifiable if and only if L1(Ae) = 0 for at least two distinct e ∈ S1.
(b) If A has a countably rectifiable subset of positive H1-measure, then L1(Ae) = 0 for at most

one e ∈ S1.

Federer [Fed47] extended Proposition 1.8 to higher dimensions as follows. Hereafter, πV : Rn →
Rk ∼= V denotes the orthogonal projection onto the k-dimensional subspace V ⊂ Rn, identified

with Rk, and we notate AV := πV (A) for A ⊆ Rn.

Theorem 1.10 (Besicovitch-Federer Projection Theorem). Let A ⊂ Rn be a k-set.

(a) A is purely unrectifiable if and only if Lk(AV ) = 0 for γn,k-a.e. V ∈ Gr(n, k).

(b) A has a countably rectifiable subset of positive Hk-measure if and only if Lk(AV ) > 0 for

γn,k-a.e. V ∈ Gr(n, k).

In fact, Federer proved something more general and abstract, but even a superficial treatment would

take us too far afield from the theory in which our primary interest lies. See, however, Theorem

3.2.27 of [Fed69], which pairs with Theorem 1.10 to give a straightforward analogue of Corollary

1.9.
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Following the results relating projections and regularity, Marstrand [Mar54a] finally made headway

on the problem of extending the dimension results of §1.1 above, i.e., of relating the dimension of

a set to the dimensions of its images under projection. Interestingly, Marstrand’s aforementioned

paper [Mar54b] on product sets in Rn was published later that same year, but this should not

come as a surprise when one considers the ad hoc methods required to work in the total absence of

regularity hypotheses.

That is not to say that [Mar54a] depends heavily on methods of a general nature: on the contrary,

Marstrand’s work, like that of Besicovitch, tended to be highly geometric—hence the confinement

to planar sets in [Mar54a]. His main theorem on projections is the following. Modern proofs forgo

delicate constructions in favor of more widely applicable tools and techniques, and the remainder

of this section concerns the relationship between the potential theoretic and Fourier transform

methods for proving Marstrand-type projection theorems.

Proposition 1.11. Let A ⊆ R2 be Borel.

(a) If dimA ≤ 1, then dimAe = dimA for a.e. e ∈ S1.
(b) If dimA > 1, then L1(Ae) > 0 for a.e. e ∈ S1.

In [Kau68], Kaufman strengthened Proposition 1.11(a) through a capacity theoretic argument and

reproved (b) via Fourier analysis. Although ahistorical, we state and prove Kaufman’s strengthening

of (a) and a later variant of (b) due to Falconer [Fal82], as they bring to the fore exceptional sets,

our primary object of study.

Proposition 1.12. Let A ⊆ R2 be Borel.

(a) If 0 ≤ s ≤ dimA ≤ 1, then

dim {e ∈ S1 : dimAe < s} ≤ s. (1.6)

(b) If 0 ≤ s ≤ 1 < dimA ≤ s+ 1, then

dim {e ∈ S1 : dimAe < s} ≤ 1− (dimA− s). (1.7)

We begin with a lemma about the regularity of the exceptional sets.

Lemma 1.13. Let K ⊆ Rn be compact and s < min {dimK, k}. Then the exceptional set {V ∈
Gr(n, k) : dimKV < s} is Gδσ and, in particular, Borel.

Proof. Using Proposition 1.1, write

E := {V ∈ Gr(n, k) : dimKV < s}

=
⋃

j∈Z+

j>s−1

{
V ∈ Gr(n, k) : Hs−j−1

∞ (KV ) = 0
}

=
⋃

j∈Z+

j>s−1

⋂
i∈Z+

{
V ∈ Gr(n, k) : Hs−j−1

∞ (KV ) < i−1
}
.

(1.8)

Given t := s − j−1 and V ∈ Gr(n, k) such that Ht
∞(KV ) < c for some c > 0, there exists a

cover {Uℓ}mℓ=1 of KV by open sets such that
∑m

ℓ=1 |Uℓ|t < c. Since K is compact (and so are its

10



projections), {Uℓ}mℓ=1 also covers KW for all W ∈ Gr(n, k) sufficiently close to V , namely, for

∥πV − πW ∥ < dist

(
K, Rn \

m⋃
ℓ=1

Uℓ

)
.

In particular, Ht
∞(KW ) < c for all W in a neighborhood of V , so the map V 7→ Ht

∞(KV ) is upper

semicontinuous. The final line of (1.8) is therefore a countable union of countable intersections of

open sets, i.e., a Gδσ set. ■

Proof of Proposition 1.12(a). There is nothing to prove if dimA = 0 or s = 0, so assume that

0 < s ≤ dimA. (The hypothesis that dimA ≤ 1 is not needed, but part (b) is always stronger

when dimA > 1.) In addition, since A can be approximated from within by compact sets, we may

assume that A is compact so that the lemma above applies.

Suppose for a contradiction that Hs(Es) > 0, where

Es := {e ∈ S1 : dimAe < s}.

Then, by Frostman’s lemma, there exists ν ∈ M(Es) such that ν(B(e, r)) ≤ rs for all e ∈ S1 and

r > 0. Similarly, letting 0 < t < s and applying Frostman’s lemma on A gives µ ∈ M(A) satisfying

µ(B(x, r)) ≤ rt for all x ∈ R2 and r > 0. Letting µe := πe♯µ, we claim that It(µe) < ∞ for ν-a.e.

e ∈ S1. To see how this yields a contradiction, notice that µe ∈ M(Ae), so we will have dimAe ≥ t

for ν-a.e. e by Proposition 1.3. Taking a sequence t = tj ↑ s then gives dimAe ≥ s for ν-a.e. e,

contradicting the definition of Es.

The idea is to integrate the t-energies with respect to ν and show that the result is finite. Begin

with the following estimate: by the “layer cake” formula and Lemma 1.5,∫
S1
|πe(x)− πe(y)|−t dν(e) =

∫ ∞

0
ν
({

e ∈ S1 : |πe(x− y)|−t ≥ α
})

dα

=

∫ ∥x−y∥−t

0
ν
({

e ∈ S1 : |πe(x− y)|−t ≥ α
})

dα+

∫ ∞

∥x−y∥−t

ν
({

e ∈ S1 : |πe(x− y)| ≤ α−1/t
})

dα

≲ ν(S1)∥x− y∥−t +

∫ ∞

∥x−y∥−t

(
α−1/t/∥x− y∥

)s
dα

= ν(S1)∥x− y∥−t + ∥x− y∥−s

∫ ∞

∥x−y∥−t

α−s/tdα ≲ ∥x− y∥−t.

It then follows by Tonelli’s theorem and the computation above that∫
S1
It(µe) dν(e) =

∫
S1

[∫∫
∥x− y∥−t dµe(x)dµe(y)

]
dν(e)

=

∫
S1

[∫∫
|πe(x)− πe(y)|−t dµ(x)dµ(y)

]
dν(e)

=

∫∫ [∫
S1
|πe(x)− πe(y)|−t dν(e)

]
dµ(x)dµ(y)

≲
∫∫

∥x− y∥−t dµ(x)dµ(y) = It(µ) < ∞,

since µ is s-Frostman and s > t. Because the integral of It(µe) with respect to dν(e) is finite, we

must have It(µe) < ∞ for ν-a.e. e ∈ S1. Therefore, Hs(Es) = 0 and, in particular, dimEs ≤ s. ■

11



A heuristic one gleans from this proof is that the concentration of a pushforward measure µe typi-

cally reflects the concentration of µ itself, subject to the constraint imposed by the dimension of the

space onto which we are projecting. When projecting a set onto a subspace of lower dimension—in

the planar case, when dimA > 1—this caveat becomes significant, as the projected measures µe

behave in an “at most 1-dimensional fashion.” We would like to say that they typically behave in a

“(dimA)-dimensional fashion,” but this is impossible from a classical perspective: a nonzero Borel

measure λ on Rk cannot satisfy λ(B(x, r)) ≤ rγ for all x ∈ Rk and r > 0 when γ > k.

The solution discovered by Kaufman [Kau68] and augmented by Falconer [Fal82] uses the Fourier

transform to recast questions about the density of µe on span e as questions about the concentration

of µ̂e near span e⊥.

Proof of Proposition 1.12(b). We show the following:

Let µ ∈ M(R2) and 0 < s < dimS µ. Then

dim {e ∈ S1 : dimS µe < s} ≤ max {1− (dimS µ− s), 0}. (1.9)

To see that this suffices, let µ ∈ M(A) be such that s < dimS µ ≤ dimA ≤ s+ 1. By Proposition

1.3, Theorem 1.4, and the definition of Sobolev dimension,

{e ∈ S1 : dimA < s} ⊆ {e ∈ S1 : dimS µe < s},

so

dim {e ∈ S1 : dimA < s} ≤ 1− (dimS µ− s)

provided (1.9) holds. Taking the infimum of the right-hand side over all µ ∈ M(A) then gives (1.7).

Let Es := {e ∈ S1 : dimS µe < s}—a Borel set by the same argument as in the proof of Lemma

1.13—and suppose for a contradiction that (1.9) does not hold. Then, taking

dimEs > p > 1− (dimS µ− s),

we obtain by Frostman’s lemma a p-Frostman measure ν ∈ M(Es). We claim that∫
S1

∫
R
|µ̂e(η)|2 (1 + |η|)s−1 dηdν(e) < ∞, (1.10)

and that this yields the desired contradiction. Indeed, this inequality implies that Is(µe) < ∞ for

ν-a.e. e ∈ S1. An application of Fatou’s lemma yields dimS µe < s (a strict inequality) whenever

Is(µe) < ∞, whence ν(Es) = 0, contradicting the fact that ν ∈ M(Es).

Owing to the equation µ̂e(η) = µ̂(ηe), (1.10) would follow immediately from the finiteness of Is(µ) if

ν were the surface measure (i.e., arc length) on S1. The workaround involves introducing a Schwartz

function to “take” the ηe from µ̂ and leave it with a single variable u, furnishing us a factor of

|µ̂(u)|2 that we integrate with respect to Lebesgue measure on R2. If the Schwartz function decays

sufficiently rapidly, this yields an estimate on the integral in (1.10) in terms of the energy of µ.

Let φ ∈ S(R2) satisfy φ|sptµ ≡ 1, so that µ = φµ and, in turn, µ̂ = φ̂µ = φ̂ ∗ µ̂. Then, by the

Cauchy-Schwarz inequality,

|µ̂(ξ)|2 = |(φ̂ ∗ µ̂)(ξ)|2 =
∣∣∣∣∫ φ̂(ξ − u)µ̂(u) du

∣∣∣∣2 = ∣∣∣∣∫ φ̂(ξ − u)1/2
(
φ̂(ξ − u)1/2 µ̂(u)

)
du

∣∣∣∣2

12



≤
∫

|φ̂(u)| du
∫

|φ̂(ξ − u)||φ̂(u)|2 du ≲φ

∫
|φ̂(ξ − u)||µ̂(u)|2 du,

whence the bound∫
S1

∫
R
|µ̂e(η)|2(1 + |η|)s−1 dηdν(e) =

∫
S1

∫
R
|µ̂(ηe)|2 (1 + |η|)s−1 dηdν(e)

≲
∫
S1

∫
R

(∫
R2

|φ̂(ηe− u)||µ̂(u)|2 du
)
(1 + |η|)s−1 dηdν(e)

=

∫
R2

|µ̂(u)|2
(∫

S1

∫
R
|φ̂(ηe− u)|(1 + |η|)s−1 dηdν(e)

)
du

≲
∫
R2

|µ̂(u)|2
(∫

S1

∫
R
(1 + ∥ηe− u∥)−N (1 + |η|)s−1 dηdν(e)

)
du

follows for all N ∈ N, where Tonelli’s theorem justifies the third line and the Schwartz class bound

on φ̂(ηe− u) justifies the fourth.

If we can show that the inner integral in the last line satisfies∫
S1

∫
R
(1 + ∥ηe− u∥)−N (1 + |η|)s−1 dηdν(e) ≲ (1 + ∥u∥)s−1−p (1.11)

for some N , then (1.10) will follow from the previous equation block:∫
S1

∫
R
|µ̂e(η)|2 (1 + |η|)s−1 dηdν(e) ≲

∫
R2

|µ̂(u)|2(1 + ∥u∥)s−1−p du = I(s−1−p)+2(µ) < ∞,

per our choice of p satisfying s− p+ 1 < dimS µ.

In particular, let N > max{1 + p, s}. To complete the proof, we estimate (1.11) via a dyadic

decomposition of S1×R into annuli centered at u. While daunting in appearance, the computations

are elementary. Denote

A0 :=
{
(e, η) ∈ S1 × R : ∥ηe− u∥ ≤ 2−1

}
and, for i ≥ 1,

Ai :=
{
(e, η) ∈ S1 × R : 2i−2 < ∥ηe− u∥ ≤ 2i−1

}
.

We partition the domain of integration into a disc and two families of annuli, all centered at u:∫
S1

∫
R
(1 + ∥ηe− u∥)−N (1 + |η|)s−1 dηdν(e)

=

∞∑
i=0

∫∫
Ai

(1 + ∥ηe− u∥)−N (1 + |η|)s−1 dηdν(e)

=

∫∫
A0

(1 + ∥ηe− u∥)−N (1 + |η|)s−1 dηdν(e)

+
∑

{i∈Z+: ∥u∥>2i}

∫∫
Ai

(1 + ∥ηe− u∥)−N (1 + |η|)s−1 dηdν(e) (1.12)

+
∑

{i∈Z+: ∥u∥≤2i}

∫∫
Ai

(1 + ∥ηe− u∥)−N (1 + |η|)s−1 dηdν(e).

13



Let us estimate each of the three terms separately. First, the integral over the disc: notice that

|η| ≲ ∥u∥ on A0, we can pull out the (1 + |η|)s−1 as (1 + ∥u∥)s−1. Using also the domain inclusion

A0 ⊆
{
(e, η) ∈ S1 × R : dist(u, span e) ≤ 2−1

}
,

the trivial bound ∫
R
(1 + ∥ηe− u∥)−N dη =

∫
R
(1 + |η|)−N dη ≲ 1,

and the paramount Lemma 1.5, we get∫∫
A0

(1 + ∥ηe− u∥)−N (1 + |η|)s−1 dηdν(e)

≲ (1 + ∥u∥)s−1

∫
{e∈S1: dist(u,span e)≤2−1}

∫
R
(1 + ∥ηe− u∥)−N dηdν(e)

≲ (1 + ∥u∥)s−1ν
({

e ∈ S1 : dist(u, span e) ≤ 2−1
})

≲ (1 + ∥u∥)s−1−p. (1.13)

The first family of dyadic annuli Ai consists of those such that the disc bounded by ∂Ai \ ∂Ai−1

does not contain the origin, and they satisfy the inclusion

Ai ⊆
{
(e, η) ∈ S1 × [−2i, 2i] : dist(u, span e) ≤ 2i

}
. (1.14)

As such, we again have |η| ≲ ∥u∥, plus Lemma 1.5 estimate on the integral with respect to dν(e),

with combine with the above domain inclusion to yield∑
{i∈Z+: ∥u∥≤2i}

∫∫
Ai

(1 + ∥ηe− u∥)−N (1 + |η|)s−1 dηdν(e)

≲ (1 + ∥u∥)s−1
∑

{i∈Z+: ∥u∥>2i}

∫∫
Ai

(1 + ∥ηe− u∥)−N dηdν(e)

≲ (1 + ∥u∥)s−1
∑

{i∈Z+: ∥u∥>2i}

2i · 2−iN ν
({

e ∈ S1 : dist(u, span e) ≤ 2i
})

≲ (1 + ∥u∥)s−1
∞∑
i=1

2(1−N)i
(
2i/∥u∥

)p
≲ (1 + ∥u∥)s−1−p

∞∑
i=1

2(1−N+p)i

≲ (1 + ∥u∥)s−1−p, (1.15)

per our choice of N > p + 1. Lastly, on the second family of dyadic annuli Ai—those with inner

radii greater than ∥u∥—we use the previous inclusion (1.14) and estimate (1+∥ηe−u∥)−N ≲ 2−iN ,

integrate with respect to dη for |η| ≤ 2i; and bound the integral with respect to dν(e) by ν(S1) ≲ 1:∑
{i∈Z+: ∥u∥≤2i}

∫∫
Ai

(1 + ∥ηe− u∥)−N (1 + |η|)s−1 dηdν(e)

≲
∑

{i∈Z+: ∥u∥≤2i}

2−iN

∫
S1

∫
|η|≤2i

(1 + |η|)s−1 dηdν(e)

≲
∑

{i∈Z+: ∥u∥≤2i}

2−iN

∫
|η|≤2i

(1 + |η|)s−1 dη
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≲
∑

{i∈Z+: ∥u∥≤2i}

2−iN · 2(i+1)(s−1) =
∑

{i∈Z+: ∥u∥≤2i}

2(s−N)i+(s−1)

≲ 1 ≲ (1 + ∥u∥)s−1−p, (1.16)

since N > s and all u of interest belong to the compact set sptµ. Combining (1.13), (1.15), and

(1.16) with (1.12) gives (1.11), as intended. ■

While the proof of (b) is unquestionably more complicated than the proof of (a), the two are, as

noted above, similar in spirit. In fact, as was done in the proof of (b), the statement of (a) can be

rephrased in terms of the Sobolev dimensions of measures:

Let µ ∈ M(R2) and 0 < s < dimS µ. Then

dim{e ∈ S1 : dimS µe < s} ≤ s.

Peres and Schlag [PS00] formulated their theory of generalized projections in this same language—a

testament its widespread applicability.

The higher-dimensional analogues of Propositions 1.11 and 1.12 are straightforward to state. The

proof of Theorem 1.15—the “quantitative” Marstrand projection theorem—is hardly different from

that of Proposition 1.12 above, and we hope that, by proving only this planar case, we bring the

working principles to the fore.

Theorem 1.14 (Marstrand Projection Theorem). Let A ⊆ Rn be Borel.

(a) If dimA ≤ k, then dimAV = dimA for γn,k-a.e. V ∈ Gr(n, k).

(b) If dimA > k, then Lk(AV ) > 0 for γn,k-a.e. V ∈ Gr(n, k).

Theorem 1.15. Let A ⊆ Rn be Borel.

(a) If 0 ≤ s ≤ dimA ≤ k, then

dim {V ∈ Gr(n, k) : dimAV < s} ≤ k(n− k)− (k − s).

(b) If 0 ≤ s ≤ k ≤ dimA ≤ k(n− k) + s, then

dim {V ∈ Gr(n, k) : dimAV < s} ≤ k(n− k)− (dimA− s).

As an aside, the direct proof of Theorem 1.14 differs little from that of Theorem 1.15: where one

integrates with respect to a measure supported on the exceptional set in the latter, one instead

integrates with respect to γn,k in the former. (As remarked in the proof of (b), this leads to vast

simplification, but the simplicity is more practical than theoretical.) However, a simple argument

using the continuity of measure from below also shows that Theorem 1.15 implies Theorem 1.14.

The dimension bound given in Theorem 1.15(a) has two interpretations: first, as the dimension

of Gr(n, k) minus the minimum dimension loss; and second, when written in the equivalent form

k(n − k − 1) + s, as the dimension of the set {V ∈ Gr(n, k) : πV (x) = 0} plus the maximum

dimension of the images. This first interpretation applies equally well to part (b), but the second

does not. An important consequence of this observation is that the existence of a proof of (b)

using potential theory alone is dubious, since part (a) hinges on the first inequality of Lemma

1.5—stated in terms of where πV (x) is small—whereas (b) utilizes the second inequality of that

lemma. This also suggests the appropriate modifications of the proof of (b) required to recover (a).
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The possibility of doing so attests to the robustness of the Fourier transform in solving geometric

measure theory problems as opposed to, e.g., problems in partial differential equations, where only

the linear theory is amenable to the Fourier transform.

We have said a great deal about the Marstrand-type theorems and little about those of the

Besicovitch-Federer type. Part of the reason hinges on the fundamental differences between the

study of sets of integer and fractional dimension. The decomposability of sets of integer dimension

into a countably rectifiable and a purely unrectifiable part—the one of which has a countable cover

by Lipschitz graphs, density 1 a.e., and a unique tangent a.e., the other of which has antithetical

properties—affords a panoply of power tools in their study. For example, projection theorems for

rectifiable sets reduce to statements about projections of Lipschitz graphs, and those for unrec-

tifiable sets benefit from the Lebesgue density theorem and its relatives, of which there are no

fractional-dimensional analogues.

Another reason is our emphasis on exceptional sets, where again the contrast is stark: Corollary 1.9

states that the exceptional set in the Besicovitch-Federer projection theorem is—for rectifiable pla-

nar sets—at most a singleton, whereas the extension of Proposition 1.11 to 1.12 entails substantial

nuance for comparatively little improvement.

2 Packing dimension of exceptional sets

While Marstrand’s projection theorem is the gold standard for results concerning the dimensions

of projections, part (a) is only known to be sharp when s = dimA. In fact, the following theorem

of Oberlin [Obe12] for planar sets—also conjectured to be true in higher dimensions—shows that

Proposition 1.12 is never sharp for Borel sets of codimension at least 1 when s is sufficiently small.

Theorem 2.1. For every Borel set A ⊆ R2 with dimA ≤ 1,

dim
{
e ∈ S1 : dimAV < 1

2 dimA
}
= 0.

See [Mat15] §5.4 for more on the current state of this problem.

Whether or not Marstrand’s projection theorem is sharp in any general circumstances, the question

of what special cases yield sharper bounds remains lucrative, and will likely remain so even after

loose ends regarding the former are sealed. The remainder of this paper addresses the following

instantiation of this question: for what families of projections and for what sorts of sets can we

obtain interesting bounds on the packing dimension of the exceptional set of projections?

Owing to the general inequality dimA ≤ dimP A, packing dimension estimates are inherently

stronger than Hausdorff dimension estimates, ceteris paribus. However, an example of Orponen

[Orp15] shows that a näıve packing dimension analogue of Proposition 1.12 is impossible.

Proposition 2.2. There exists a compact set K ⊂ R2 with H1(K) > 0 and a dense Gδ set E ⊂ S1

such that dimKe = 0 for all e ∈ E. In particular,

dimP {e ∈ S1 : dimKe = 0} = 1.

As such, packing dimension bounds on exceptional sets demand greater nuance. Given the disparity

of the methods required to work with packing and Hausdorff dimensions, one might fear that no
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salient connection with Marstrand’s theorem exists at all. The two papers examined in this section,

Rams [Ram02] and Orponen [Orp15], refute this concern, as the packing dimension bounds they

obtain under their respective hypotheses coincide with the Hausdorff dimension bounds of Theorem

1.15.

2.1 Rams’ theorem

Theorem 1.1 of Rams [Ram02] implies a result similar to that of Kaufman, but with a packing

dimension bound replacing the Hausdorff dimension bound on the exceptional set; with this addi-

tional strength comes the drawback that the set under consideration must be fairly regular. We

begin by stating his theorem in full. The terminology and notation are substantial, so the reader

may wish to view §2 and Definition 4.4 of [Ram02] (in addition to §1.2.5 of this paper) for additional

background.

Theorem 2.3 (Rams’ Theorem). Let V ⊂ Rn be a bounded open set, and for each t ∈ V , let(
fi( · ; t)

)N
i=1

be a conformal IFS on Rn with limit set Kt. Assume that each fi is C1,β in all n

variables and n parameters for some β > 0, and denote by σ(t) the solution to Bowen’s equation

P (σ(t)χt) = 0,

where P is the topological pressure and χt is the Lyapunov exponent of the IFS. Lastly, for each

s ≥ 0, let Gs be the exceptional set

Gs := {t ∈ V : dimKt ≤ s}.

If
(
fi( · ; t)

)N
i=1

satisfies the transversality condition, then, for all t ∈ V ,

lim sup
r→0

dimP (Gs ∩Br(t)) ≤ s for all 0 ≤ s < min {n, σ(t)}.

The level of generality exceeds our needs, so we state the following corollary.

Corollary 2.4. Let V ⊂ Rn be a bounded open set, and for each t ∈ V , let
(
fi( · ; t)

)N
i=1

be a family

of similarities on Rn with limit set Kt. Assume that each fi is smooth in all n variables and n

parameters, and denote by σ(t) the solution to Moran’s equation

N∑
i=1

ai(t)
σ(t) = 0,

where ai(t) ∈ (−1, 1) is the similarity ratio of fi( · ; t). If
(
fi( · ; t)

)N
i=1

satisfies the transversality

condition, then

dimP {u ∈ V : dimKu ≤ s} ≤ s for all 0 ≤ s < min

{
n, sup

t∈V
σ(t)

}
.

For a given t, the quantity σ(t) is called the similarity dimension of the IFS. A question of

independent interest is when the similarity dimension of an IFS equals the Hausdorff, upper box,

or packing dimension of its attractor. A simple covering argument shows that the SSC implies the

equality of all these quantities.

Let ρe : Rn−1 → Rn−1 denote the orthogonal projection onto the hyperplane orthogonal to the

vector e ∈ Sn−1, and suppose K ⊂ Rn is the limit set of an IFS (gi)
N
i=1 that satisfies the SSC. For
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each e ∈ Sn−1, we can choose a section ρ−1
e of ρe and define fi( · ; e) := ρe ◦ gi ◦ ρ−1

e : Rn−1 → Rn−1.

Then each (fi( · ; e))Ni=1 is an IFS on Rn−1 with limit set ρe(K). As such, the problem of determining

the exceptional set of projections for K is equivalent to determining the exceptional set of the IFS

(fi( · ; e))Ni=1.

This setup allows for an application of Rams’ theorem to obtain the following.

Proposition 2.5. Let K ⊂ Rn be the limit set of a family of similarities containing no rotations

or reflections and satisfying the SSC. Then

dimP {e ∈ Sn−1 : dim ρe(K) ≤ s} ≤ s for all 0 ≤ s < min {n− 1,dimK}.

Our main result will subsume this as a special case; nevertheless, we include its proof to shed light

on the relationship between his work and our own, and to give a sense of just how strong Rams’

transversality condition is.

Proof. It suffices to work in local coordinates, so we let V ⊂ Sn−1 be an open set whose closure V

is diffeomorphic to a bounded subset of Rn−1. These local coordinates also afford us a consistent

identification of the tangent hyperplanes to Sn−1 with Rn−1. Dispensing with these technicalities,

we we simply refer to our parameter space as Sn−1 and use the formula ρe(x) = x− (x · e)e for the

orthogonal projections.

[Step 1] Let (gi)
N
i=1 be an IFS on Rn with limit set K and satisfying the SSC. We seek to produce

a smooth family of IFS on Rn−1 to which we can apply Corollary 2.4.

To this end, we define
(
fi( · ; e)

)N
i=1

by

fi(ξ; e) := (ρe ◦ gi)
(
ρ−1
e (ξ)

)
for each e ∈ Sn−1, where ρ−1

e (ξ) is any preimage of the point ξ ∈ Rn−1. This definition is unam-

biguous because gi takes the form gi(x) = aix+ bi for some ai ∈ R and bi ∈ Rn, whence

(ρe ◦ gi)
(
ρ−1
e (ξ)

)
= ρe

(
aiρ

−1
e (ξ) + bi

)
= aiρe

(
ρ−1
e (ξ)

)
+ ρe(bi) = aiξ + ρe(bi)

for any choice of ρ−1
e (ξ). This also shows that

(
fi( · ; e)

)N
i=1

is smooth in both x and e, as ρe(bi) =

bi − (bi · e)e.

[Step 2] We show that
(
fi( · ; e)

)N
i=1

is a transverse family. Let ω, κ ∈ Σ, where ω1 ̸= κ1, and let

fωm(ξ; e) denote the composite map fω1( · ; e) ◦ · · · ◦ fωm( · ; e) evaluated at ξ. Then

fωm(ξ; e) =
(
(ρe ◦ gω1 ◦ ρ−1

e ) ◦ · · · ◦ (ρe ◦ gωm ◦ ρ−1
e )
)
(ξ)

=
(
ρe ◦ (gω1 ◦ · · · ◦ gωm) ◦ ρ−1

e

)
(ξ)

= (ρe ◦ gωm ◦ ρ−1
e )(ξ)

for any section ρ−1
e of ρe. Therefore, by the continuity of ρe,

fω(ξ; e) := lim
m→∞

fωm(ξ; e) = ρe

(
lim

m→∞
gωm

)(
ρ−1
e (ξ)

)
= (ρe ◦ gω)

(
ρ−1
e (ξ)

)
.

In particular, we can take ρ−1
e (0) = 0, so

Πe(ω) = fω(0; e) = (ρe ◦ gω)(0) = ρe(Π(ω));

likewise for κ.
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Denote z = (z1, ..., zn) = Π(ω)−Π(κ), and suppose

|ρu(z)| =
∣∣ρu(Π(ω))− ρu(Π(κ))

∣∣ = |Πu(ω)−Πu(κ)| < 2−1c (2.1)

for some u ∈ Sn−1, where c ∈ (0, 1] is a constant such that dist(gi(K), gj(K)) > c for all i ̸= j. Such

an c exists because (gi)
N
i=1 satisfies the SSC. Since Π(ω) ∈ gω1(K), Π(κ) ∈ gκ1(K), and ω1 ̸= κ1, it

follows that |z| > c—a fact we shall use shortly.

To show transversality, we must compute

detDe

(
ρe(z)

)∣∣
e=u

.

The determinant is invariant under a linear change of coordinates, so we can rotate our coordinate

system so that u = en = (0, ..., 0, 1). Consider h : e 7→ ρe(z) as a map from Rn to Rn, i.e., by

extending ρe(z) to take parameter values in Rn. Considered as an n× n matrix, the jth column of

the derivative Deh(e)|e=en is given by the directional derivative

d

dr
ρen+rej (z)

∣∣
r=0

=
d

dr

(
z − (z · (en + rej))(en + rej)

)∣∣
r=0

= −zj(en + rej)− (zn + rzj)ej
∣∣
r=0

= −zjen − znej ,

yielding

Deh(e)|e=en =


−zn · · · 0 0
...

. . .
...

...

0 · · · −zn 0

−z1 −z2 · · · −2zn

 .

Since Deh(e)|e=en restricts to an automorphism of the tangent plane (span en)
⊥ ∼= TenSn−1, and

since the standard coordinate frame (e1, ..., en) is adapted to Sn−1 at the north pole en, the matrix

of this restricted linear map is obtained simply by omitting the nth row and nth column of the

matrix. That is, De

(
ρe(z)

)∣∣
e=en

= −znIn−1 and, consequently,

detDe

(
ρe(z)

)∣∣
e=en

= det
(
−znIn−1

)
= (−zn)

n−1.

Now, since z = ρen(z) + znen, |ρen(z)|2 < 2−1c2, and |z|2 > c2, it must be that |zn|2 = |znen|2 >

2−1c2 and, in turn, ∣∣∣De

(
ρe(z)

)∣∣
e=en

∣∣∣ = |zn|n−1 > 2−(n−1)/2cn−1 ≥ 2−1c.

In view of Equation (2.1), we conclude that, whenever ω1 ̸= κ1,

|Πu(ω)−Πu(κ)| < 2−1c implies
∣∣∣detDe

(
Πe(ω)−Πe(κ)

)∣∣
e=u

∣∣∣ = ∣∣∣ detDe

(
ρe(z)

)∣∣
e=u

∣∣∣ > 2−1c,

so
(
fi( · ; e)

)N
i=1

satisfies the transversality condition.

[Step 3] We apply Corollary 2.4 to get

dimP {e ∈ Sn−1 : dim ρe(K) ≤ s} ≤ s for all 0 ≤ s < min

{
n− 1, sup

e∈Sn−1

σ(e)

}
.

Since the given IFS consists only of similarities gi(x) = aix + bi, the similarity dimension σ(e) of

each IFS is the same as the similarity dimension of (gi)
N
i=1, namely, dimK, so the proposition is

proved. ■
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2.2 A theorem of Orponen

While Rams’ theorem is very general in that it applies to families of nonlinear maps, the proof

of Proposition 2.5 reveals two weaknesses that greatly limit its scope. First, the conformal family

of IFS on Rn must depend on exactly n parameters (and in a nontrivial way). This is why the

proposition only applies to projections onto hyperplanes. Second, the family of projections must

satisfy a strong transversality condition that even the classical examples of IFS—for example, the

similarities generating the Sierpiński triangle—do not enjoy; hence our requirement that the IFS

satisfy the SSC. The second critique in some sense generalizes the first, owing to Rams’ strict

definition of transversality, but his definition does readily extend to m-parameter families on Rn

for m ̸= n.

For planar sets, Orponen’s result in [Orp15] allows us to forgo the rotation and separation conditions

of Proposition 2.5 in the case that K is self-similar, or to instead assume that K is homogeneous.

Proposition 2.6. Let K ⊂ R2 be homogeneous or self-similar. Then

dimP {e ∈ S1 : dimKe ≤ s} ≤ s

for all 0 ≤ s < dimK.

While this is interesting simply in view of Proposition 2.5, the search for packing dimension bounds

on {e ∈ S1 : dimKe ≤ s}—the set of directions in which the Hausdorff dimension is small—has

something of historical significance. Hausdorff dimension plays several distinct roles in Theorems

1.14 and 1.15: in measuring the size of the set A, in measuring the sizes of its projections AV , and

in measuring the sizes of the exceptional sets Es. The first Marstrand-type theorem to incorporate

packing dimension, originally due to Järvenpää [Jär94] and subsequently sharpened by Falconer

and Howroyd [FH97], is the analogue of Theorem 1.15 with dimP A and dimP AV replacing dimA

and dimAV , respectively. In particular, Theorem 13 and Proposition 18 of [FH97] combine to give

the following:

Theorem 2.7. Let A ⊆ Rn be a Borel set and 0 < s ≤ k ≤ n. Then

dim

{
V ∈ Gr(n, k) : dimP AV <

dimP A

1 + (s−1 − n−1) dimP A

}
≤ k(n− k)− (k − s).

If each instance of packing dimension were replaced with Hausdorff, then the resulting statement

would be weaker than Theorem 1.15, and [Jär94] gives an example showing that nothing stronger

can be said in general. This is another manifestation of the poor behavior of packing dimension

under projections observed in the prelude.

In view of Proposition 2.2 and Theorem 2.7, the only natural combination of dimensions left to try is

to bound the packing dimension of the set of directions in which dimP A is small. Orponen does this

for planar sets in [Orp15] (cf. Theorem 1.6), but those results defy comparison to Proposition 1.12.

In order to identify circumstances in which we can truly obtain a sharper bound than that given by

Proposition 1.12 (or, more generally, by Theorem 1.15), one must look at the packing dimension (or

any dimension Dim satisfying dimA ≤ DimA) of the exceptional set but the Hausdorff dimension

of the projections. Proposition 2.2 demands that this endeavor only be taken for sets for sets A in

a much smaller class than the class of Borel sets.
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3 Higher dimensions and further directions

This final section details the author’s completed and continuing work building on and extending

the work of Rams, Furstenberg, and Orponen. His most significant result of this research to date

is the following higher dimensional analogue of Proposition 2.6.

Theorem 3.1. If K ⊂ Rn is a homogeneous set or a self-similar with finite rotation group, then

dimP {V ∈ Gr(n, k) : dimKV ≤ s} ≤ k(n− k)− (k − s) (3.1)

for all 0 ≤ s < dimK.

Our proof will closely follow Orponen’s: it is primarily a geometric combinatorial argument, cleverly

paired with some rudimentary properties of homogeneous sets.

3.1 Counting points on Gr(n,k)

Counting arguments pervade the literature on packing dimension, and our main theoretical tool in

this capacity is a discrete version of Lemma 1.5. The motivating question is this: given x, y ∈ Rn, a

δ-separated set E ⊂ Gr(n, k), and c > 0, for how many V ∈ E do we have ∥πV (x)− πV (y)∥ ≤ cδ?

The following—conceivably of independent interest—provides a broad answer.

Lemma 3.2. Let x ∈ Rn \ {0} and 0 < δ1, δ2 < ∞, and let E ⊂ Gr(n, k) be δ2-separated. Then

card
{
V ∈ E : ∥πV (x)∥ ≤ δ1

}
≲n,k δk1 δ

−k(n−k)
2 ∥x∥−k.

Proof. Since rk(n−k) ≲ γn,k(B(V, r)) for all V ∈ Gr(n, k) and r ∈ (0, 1], it follows from the

separation hypothesis on E that

δ
k(n−k)
2 card

{
V ∈ E : ∥πV (x)∥ ≤ δ1

}
≲ γn,k

({
V ∈ Gr(n, k) : ∥πV (x)∥ ≤ δ1

})
.

We likewise have γn,k(B(V, r)) ≲ rk(n−k), whence

γn,k
({

V ∈ Gr(n, k) : ∥πV (x)∥ ≤ δ1
})

≲ δk1 ∥x∥−k

by Lemma 1.5. Combining the above two inequalities and dividing through by δ
k(n−k)
2 completes

the proof. ■

The question at the start of this section is answered by replacing x with x − y and applying the

linearity of πV .

3.2 Proof of Theorem 3.1

Given a set K ⊆ Rn, we denote by ∆(V ) the set of all ∆ ≥ 0 such that the dimension conservation

condition (1.5) holds with A = K and f = πV :

∆ + dim
{
y ∈ Rm : dim(π−1

V (y) ∩K) ≥ ∆
}
≥ dimK.

Theorem 3.1 will follow readily from the following two lemmas. The first is essentially true by

definition, but it formalizes the idea that dimension conservation allows one to recover information

about the dimension of a set from knowledge of the dimension of a projection.

Lemma 3.3. If K ⊂ Rn is homogeneous, then{
V ∈ Gr(n, k) : dimKV ≤ s

}
⊆
{
V ∈ Gr(n, k) : ∆ ≥ dimK − s ∀∆ ∈ ∆(V )

}
. (3.2)

21



Proof. Since K ⊂ Rn is homogeneous, πV is DC for K for all V ∈ Gr(n, k); hence, ∆(V ) ̸= ∅.

Suppose dimKV ≤ s. If ∆ ∈ ∆(V ), then, by the definition of dimension conservation,

∆ + dim
{
y ∈ Rk : dim

(
K ∩ π−1

V (y)
)
≥ ∆

}
≥ dimK.

Of course,

KV ⊇
{
y ∈ Rk : dim

(
K ∩ π−1

V (y)
)
≥ ∆

}
,

for if y ̸∈ KV , then dim
(
K ∩ π−1

V (y)
)
= dim∅ = −∞ < ∆. Therefore, by the monotonicity of

dimension,

∆ + s ≥ ∆+ dimKV ≥ dimK. ■

The second lemma is much more involved, and the reader is encouraged to skip ahead to see how

it is used before examining its proof.

Lemma 3.4. Let K ⊂ Rn be a compact set with dimK = dimBK. Then

dimP

{
V ∈ Gr(n, k) : ∃∆ ∈ ∆(V ) s.t. ∆ ≥ dimK − s

}
≤ k(n− k)− (k − s) (3.3)

for all 0 ≤ s < dimK.

Proof. The s = 0 case follows from the s > 0 case by letting s ↓ 0, so we assume that s > 0.

[Step 1] Let γ := dimK, and let E denote the exceptional set on the left-hand side of Equation

(3.3). We begin by making a reduction that affords us the small parameters required for our

argument. In particular, we claim that it suffices to show the following for all ε > 0 sufficiently

small and for all 0 < τ < γ − s:

dimB Eε,τ ≤ k(n− k)− (k − s) + 3τ, (3.4)

where

Eε,τ :=
{
V ∈ Gr(n, k) : ∃∆ ≥ γ − s s.t. Hγ−∆−τ

∞
({

y ∈ Rk : H∆−τ
∞

(
K ∩ π−1

V (y)
)
> ε
})

> ε
}
.

To prove the validity of this reduction, suppose that ∆ ≥ γ− s for some ∆ ∈ ∆(V ). (In particular,

πV is DC for K.) Then, for every τ > 0,

dim
{
y ∈ Rk : dim

(
K ∩ π−1

V (y)
)
≥ ∆

}
> γ −∆− τ.

Consequently, if 0 < τ < γ − s ≤ ∆, the set on the left-hand side of this inequality has infinite

(γ − ∆ − τ)-dimensional Hausdorff measure and, consequently, positive (γ − ∆ − τ)-dimensional

Hausdorff content:

Hγ−∆−τ
∞

({
y ∈ Rk : dim

(
K ∩ π−1

V (y)
)
≥ ∆

})
> 0.

Similarly, dim
(
K ∩ π−1

V (y)
)
≥ ∆ implies H∆−τ

∞
(
K ∩ π−1

V (y)
)
> 0, so

Hγ−∆−τ
∞

({
y ∈ Rk : H∆−τ

∞
(
K ∩ π−1

V (y)
)
> 0
})

> 0.

Writing {
y ∈ Rk : H∆−τ

∞
(
K ∩ π−1

V (y)
)
> 0
}
=

⋃
m∈Z+

{
y ∈ Rk : H∆−τ

∞
(
K ∩ π−1

V (y)
)
> m−1

}
,
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we can by countable additivity find ε = m−1 > 0 such that

Hγ−∆−τ
∞

({
y ∈ Rk : H∆−τ

∞
(
K ∩ π−1

V (y)
)
> ε
})

> 0.

The left-hand side is decreasing in ε, so we can further reduce ε if necessary to obtain

Hγ−∆−τ
∞

({
y ∈ Rk : H∆−τ

∞
(
K ∩ π−1

V (y)
)
> ε
})

> ε.

Hence, V ∈ Eε,τ , whence we can write

E ⊆
∞⋃

m=N

Em−1,τ .

for any N ∈ Z+. It follows from our definition of packing dimension that (3.4) implies (3.3), so we

set out to prove (3.4).

[Step 2] Let ε > 0 and 0 < τ < γ − s. We discretize the problem and define a family of relations,

indexed by V ∈ Gr(n, k), that relate distant points x, y ∈ K whose projections πV (x), πV (y) are

close.

Let γ′ > γ, d := (γ − s− τ)−1, and

δ < η :=
εd

n1/222+d (2n−k + 1)d
.

(The significance of this requirement on δ will become apparent later.) By the definition of upper

box dimension, there exists a finite subset K0 ⊆ K such that cardK0 ≲ δ−γ′
and

K ⊆
⋃

x∈K0

B(x, δ).

For each V ∈ Gr(n, k), let TV be the family of δ-fat (n− k)-planes of the following form:

π−1
V

(
k∏

i=1

[
jiδ, (ji + 1)δ

))
⊂ Rn,

j1, ..., jk ∈ Z. (For succinctness, we will call these “elements of TV ” or “fat planes.”) These are

half-open neighborhoods of fibers of πV over points of the lattice
(
Z+ 1

2

)k
δ, and their disjoint union

is all of Rn. We define relations ∼V on Rn by

x ∼V y ⇐⇒ ∥x− y∥ > 2η =
εd

21+d(2n−k + 1)d
and ∃T ∈ TV s.t.

B(x, δ) ∩ T ̸= ∅ and B(y, δ) ∩ T ̸= ∅.

(3.5)

This states that ∼V relates points of Rn that are not too close to each other, but that nevertheless

belong to the same fat plane, adjacent fat planes, or fat planes with a common neighboring fat

plane. In particular, although the points are fairly distant from each other, their projections onto

V are quite close.

[Step 3] Let E0 ⊆ Eε,τ be any δ-separated subset, and define the energy of E0 by

E :=
∑
V ∈E0

card
{
(x, y) ∈ K2

0 : x ∼V y
}
. (3.6)

We use this energy to bound cardE0 and, in turn, dimB Eε,τ .

23



To obtain an upper bound, note that, given x, y ∈ K0, the number of k-planes V ∈ E0 such that

x ∼V y is ≲ δ−k(n−k)+k∥x− y∥−k by Lemma 3.2. Hence, for a fixed x ∈ K0, we have

∑
V ∈E0

card
{
y ∈ K0 : x ∼V y

}
≲ δ−k(n−k)+k

 max
y∈K0,V ∈E0:

x∼V y

∥x− y∥−k

 card {y ∈ K0 : ∥x− y∥ > 2η}

≤ δ−k(n−k)+k(2η)−k cardK0 ≲ δ−k(n−k)+k−γ′
,

where both ≲ indicate inequality up to a constant depending only on n, γ, s, ε, and τ , but not δ.

Summing over all x ∈ K0 gives

E ≲ δ−k(n−k)+k−γ′
cardK0 ≲ δ−k(n−k)+k−2γ′

.

To place a lower bound on E , we estimate the individual terms in the sum (3.6). Let V ∈ E0 ⊆ Eε,τ

and ∆ ∈ ∆(V ). Unwinding the definition of Eε,τ , we see that there exist j ≳ δ∆+τ−γ fat planes

Ti ∈ TV and points yi ∈ πV (Ti), i = 1, ..., j, with the following property: if Wi := π−1
V (yi) denotes

the (n− k)-plane contained in Ti that “passes through” yi, then

H∆−τ
∞ (K ∩Wi) > ε. (3.7)

To ensure that we are counting “enough” of the relations x ∼V y that hold on K0, we checkerboard

each (n− k)-plane Ti ∈ TV with boxes or “checkerboard squares”

R = Ti ∩ π−1
V ⊥

(
n−k∏
ℓ=1

[
4iℓη, 4(iℓ + 1)η

))
,

i1, ..., in−k ∈ Z (see Figure 2). Recalling that we chose δ < η, we see that

|R| =

(
n−k∑
ℓ=1

(4η)2 +
n∑

ℓ=n−k+1

δ2

)1/2

<

(
n∑

ℓ=1

(4η)2

)1/2

= n1/2 · 4η =
εd

2d (2n−k + 1)d

and, consequently, that

TiRℓ

4η
4η

δ

Figure 2. The “checkerboard square” Rℓ in the case (n, k) = (3, 1). By choice, δ < η, and

the figure is stretched in the vertical direction for visual clarity.
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H∆−τ
∞ (R) ≤ |R|∆−τ <

ε

2(2n−k + 1)
, (3.8)

per our choice of d. It then follows from (3.7) and (3.8) that, for any choice of squares R1, ...,

R2n−k+1,

H∆−τ
∞

(K ∩Wi) \
2n−k+1⋃
ℓ=1

Rℓ

 >
ε

2
,

so any cover of (K ∩Wi) \R by δ-balls contains ≳ δτ−∆ balls.

Now, (3.7) and (3.8) also entail that there exist distinct R1, ..., R2n−k+1 whose intersections with

K ∩Wi each have positive (∆− τ)-dimensional Hausdorff content. In particular,

card
{
x ∈ K0 : B(x, δ) ∩ (K ∩Wi ∩Rp) ̸= ∅

}
≳ δτ−∆ (3.9)

for p = 1, ..., 2n−k + 1, because {B(x, δ) : x ∈ K0} is a cover of K. Necessarily, at least 2 of these

squares Rp, Rq are mutually non-adjacent, so they are 4η-separated. Therefore, if x, y ∈ K0 are

such that

B(x, δ) ∩ (K ∩Wi ∩Rp) ̸= ∅ and B(y, δ) ∩ (K ∩Wi ∩Rq) ̸= ∅,

then

∥x− y∥ > 4η − 2δ > 2η,

so that x ∼V y. In conjunction with (3.9), this yields the estimate

card
{
(x, y) ∈ K2

0 : B(x, δ)∩ (K ∩Wi ∩Rp) ̸= ∅, B(y, δ)∩ (K ∩Wi ∩Rq) ̸= ∅, x ∼V y
}
≳ (δτ−∆)2.

No δ-ball intersects more than 3k fat planes in TV , so we may sum the previous over all i ∈ {1, ..., j}
to get

card
{
(x, y) ∈ K2

0 : x ∼V y
}
≳ j(δτ−∆)2 ≳ δ(∆+τ−γ)+2(τ−∆) ≥ δ3τ+s−2γ ,

where the final inequality follows from our original hypothesis that ∆ ≥ γ − s. This is the desired

lower bound on the individual summands in (3.6), and multiplying by cardE0 yields the desired

bound on E itself:

E ≳ cardE0 · δ3τ+s−2γ .

[Step 4] In combination with our upper bound δ−k(n−k)+k−2γ′
≳ E , this at last provides a concrete

upper bound on cardE0 in terms of δ, namely,

cardE0 ≲ δ−k(n−k)+k−2γ′−(3τ+s−2γ) = δ−k(n−k)+(k−s)−3τ−2(γ′−γ).

Since γ′ > γ was arbitrary, the estimate cardE0 ≲ δ−k(n−k)+(k−s)−3τ follows at once. This holds

for every δ-separated subset E0 ⊆ Eε,τ , so we conclude (3.4) and, in turn, (3.3). ■

Proof of Theorem 3.1. Suppose that K is homogeneous, so that dimK = dimB K and, for all

V ∈ Gr(n, k), πV is DC for K. Then Lemmas 3.3 and 3.4 combine to yield

dimP

{
V ∈ Gr(n, k) : dimKV ≤ s

}
≤ dimP

{
V ∈ Gr(n, k) : ∆ ≥ dimK − s ∀∆ ∈ ∆(V )

}
= dimP

{
V ∈ Gr(n, k) : πV is DC for K and ∆ ≥ dimK − s ∀∆ ∈ ∆(V )

}
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≤ dimP

{
V ∈ Gr(n, k) : ∃∆ ∈ ∆(V ) s.t. ∆ ≥ dimK − s

}
≤ k(n− k)− (k − s).

If instead K is self-similar with finite rotation group and if ε > 0, then, by [Orp12] Lemma 2.4,

there exists a homogeneous set Kε ⊆ K with dimKε > dimK − ε. It then follows from the above

that

dimP

{
V ∈ Gr(n, k) : dimKV ≤ s

}
≤ dimP

{
V ∈ Gr(n, k) : dimKε

V ≤ s
}

≤ k(n− k)− (k − s)

for every 0 ≤ s < dimK − ε. Since ε > 0 was arbitrary, the desired inequality must hold for all

0 ≤ s < dimK. ■

3.3 Further directions

Orponen’s 2015 paper is rife with other results that beg generalization to higher dimensions, and

the same combinatorial approach taken to prove Theorem 3.1 will in all likelihood work just as

well in proving these extensions. It is less clear that this will remain the case for the packing

dimensional analogue of Theorem 1.15(b), or whether its statement is even true. However, there

is no obvious impediment to discretizing its proof in the same way that we discretized the proof of

Theorem 1.15(a) to obtain Theorem 3.1. As such, we record this as a conjecture.

Conjecture 1. Let K ⊂ Rn be homogeneous or self-similar and let 0 < k < n be an integer. If

dimK > k, then

dimP {V ∈ Gr(n, k) : dimKV ≤ s} ≤ k(n− k)− (dimK − s)

for all 0 ≤ s ≤ k ≤ dimK < k(n− k) + s.

The theoretical underpinning of Theorem 3.1 is Furstenberg’s principle of dimension conservation.

Philosophically, dimension conservation affords us partial knowledge of why the dimension of a

set may have dropped upon projection onto a subspace: the dimension of the fibers accounts for

a “substantial portion” of the dimension lost—the dimension did not simply “vanish”—and this

concrete information enables us to deduce what is happening upstairs in Rn from what we see

downstairs in Rk.

A paper [FFK20] of Falconer, Fraser, and Kempton introduces a continuous spectrum of θ-interm-

ediate dimensions dimθ that bridge the gap between Hausdorff and box dimensions, and Burrell,

Falconer, and Fraser in [BFF21] were quick to acknowledge this as a tool and language for new

projection theorems. Instead of using dimension conservation to go directly from the images back to

the original set, the parameter θ might allow us to recover information about the packing dimension

of the exceptional set from what we already know about the Hausdorff dimension of the exceptional

set, i.e., from Marstrand’s projection theorem. This leads me to suggest a sweeping generalization

of Theorem 3.1.

Conjecture 2. Let K ⊂ Rn be a bounded set such that the map θ 7→ dimθK is continuous at θ = 0.

Then the conclusion of Theorem 3.1 holds, and if dimK > k, then the conclusion of Conjecture 1

holds.

26



References

[Bes39] A. S. Besicovitch. “On the fundamental geometrical properties of linearly measurable

plane sets of points (III)”. In: Math. Ann. 116.1 (1939), pp. 349–357.

[BFF21] S. A. Burrell, K. J. Falconer, and J. M. Fraser. “Projection theorems for intermediate

dimensions”. In: Jour. Frac. Geo. 8.2 (2021), pp. 95–116.

[BM45] A. S. Besicovitch and P. A. P. Moran. “The measure of product and cylinder sets”. In:

Jour. London Math. Soc. 1.2 (1945), pp. 110–120.

[Fal14] K. J. Falconer. Fractal Geometry: Mathematical Foundations and Applications. Wiley,

2014.

[Fal82] K. J. Falconer. “Hausdorff dimension and the exceptional set of projections”. In: Math-

ematika 29.1 (1982), pp. 109–115.

[Fed47] H. Federer. “The (ϕ, k) rectifiable subsets of n space”. In: Trans. Amer. Math. Soc. 62.1

(1947), pp. 114–192.

[Fed69] H. Federer. Geometric Measure Theory. Springer, 1969.

[FFK20] K. J. Falconer, J. M. Fraser, and T. Kempton. “Intermediate dimensions”. In: Math.

Zeit. 296.1 (2020), pp. 813–830.

[FH97] K. J. Falconer and J. D. Howroyd. “Packing dimensions of projections and dimen-

sion profiles”. In: Math. Proc. Cambridge Phil. Soc. Vol. 121. 2. Cambridge UP. 1997,

pp. 269–286.

[Fur08] H. Furstenberg. “Ergodic fractal measures and dimension conservation”. In: Ergod. The-

ory Dyn. Syst. 28.2 (2008), pp. 405–422.

[How95] J. D. Howroyd. “On dimension and on the existence of sets of finite positive Hausdorff

measure”. In: Proc. London Math. Soc. 3.3 (1995), pp. 581–604.

[How96] J. D. Howroyd. “On Hausdorff and packing dimension of product spaces”. In: Math.

Proc. Cambridge Phil. Soc. 119.4 (1996), pp. 715–727.
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